Home » Blog » Find multiple derivatives of a given function

Find multiple derivatives of a given function

Let

    \[ f(x) = \frac{1 - \sqrt{x}}{1+\sqrt{x}}. \]

Find formulas for the first, second, and third derivatives of f.


These are straightforward computations using the rules for derivatives of quotients and for rational powers of x.

The first derivative:

    \begin{align*}  Df(x) &= \frac{\left(1+\sqrt{x}\right)\left( \frac{-1}{2 \sqrt{x}} \right) - \left( 1 - \sqrt{x} \right)\left(\frac{1}{2 \sqrt{x}} \right)}{\left( 1 + \sqrt{x} \right)^2} \\  &= \frac{-\frac{1}{2\sqrt{x}} - \frac{1}{2} - \frac{1}{2\sqrt{x}} + \frac{1}{2}}{\left( 1 + \sqrt{x} \right)^2} \\  &=  \frac{-1}{\sqrt{x} \left( 1 + \sqrt{x} \right)^2}. \end{align*}

The second derivative:

    \begin{align*} D^2 f(x) &= D \left( \frac{-1}{\sqrt{x} \left( 1 + \sqrt{x} \right)^2} \right) \\  &= \frac{\frac{1}{2\sqrt{x}} \left( 1 + \sqrt{x} \right)^2 + 2 \sqrt{x} \left( 1 + \sqrt{x} \right) \left( \frac{1}{2 \sqrt{x}} \right)}{x \left( 1 + \sqrt{x} \right)^4} \\  &= \frac{1 + 3 \sqrt{x}}{2 \left(x + \sqrt{x} \right)^3}. \end{align*}

And, the third derivative:

    \begin{align*}  D^3 f(x) &= D \left( \frac{1 + 3 \sqrt{x}}{2 \left( x + \sqrt{x} \right)^3} \right) \\  &= \frac{\frac{3}{2 \sqrt{x}} \left( 2 \left(x + \sqrt{x}\right)^3\right) - \left(1 + 3 \sqrt{x} \right) \left(6 \left( x + \sqrt{x} \right)^2 \left( 1 + \frac{1}{2 \sqrt{x}} \right) \right)}{4 \left( x + \sqrt{x} \right)^6} \\  &= \left( -\frac{3}{4} \right) \left( \frac{1 + 4 \sqrt{x} + 5x}{\sqrt{x} \left(x + \sqrt{x} \right)^4} \right). \end{align*}

3 comments

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):