Home » Blog » Verify formulas for the derivatives of some trig functions

Verify formulas for the derivatives of some trig functions

Verify the following formulas:

  1. f(x) = \tan x \quad \implies \quad f'(x) = \phantom{-}\sec^2 x.
  2. f(x) = \cot x \quad \implies \quad f'(x) = -\csc^2 x.
  3. f(x) = \sec x \quad \implies \quad f'(x) = \phantom{-}\tan x \sec x.
  4. f(x) = \csc x \quad \implies \quad f'(x) = -\cot x \csc x.

  1. Let f(x) = \tan x = \frac{\sin x}{\cos x}. We use the quotient rule and the derivatives of sine and cosine to compute,

        \begin{align*}   f'(x) &= \frac{(\sin x)'(\cos x) - (\sin x)(\cos x)'}{\cos^2 x} \\  &= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \\  &= \frac{1}{\cos^2 x} \\  &= \sec^2 x. \qquad \blacksquare \end{align*}

  2. Let f(x) = \cot x = \frac{\cos x}{\sin x}. Using the quotient rule and derivatives of sine and cosine again,

        \begin{align*}  f'(x) &= \frac{(\cos x)'(\sin x) - (\cos x)(\sin x)'}{\sin^2 x} \\  &= \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} \\  &= \frac{-1}{\sin^2 x} \\  &= -\csc^2 x. \qquad \blacksquare \end{align*}

  3. Let f(x) = \sec x = \frac{1}{\cos x}. Again, we compute,

        \begin{align*}  f'(x) &= \frac{\sin x}{\cos^2 x} \\  &= \left( \frac{\sin x}{\cos x} \right) \left( \frac{1}{\cos x} \right)\\  &= \tan x \sec x. \qquad \blacksquare \end{align*}

  4. Let f(x) = \csc x = \frac{1}{\sin x}. Then,

        \begin{align*}  f'(x) &= \frac{-\cos x}{\sin^2 x} \\  &= \left( \frac{-\cos x}{\sin x} \right) \left( \frac{1}{\sin x} \right) \\  &= - \cot x \csc x. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):