Home » Blog » Show a function is monotonic and find a formula for its inverse

Show a function is monotonic and find a formula for its inverse

Let f(x) = 2x+5. Show that f is strictly monotonic on \mathbb{R}. Find the domain of the inverse of f, denoted by g. Find a formula for computing g(y) for each y in the domain of g.


First, to show f is monotonic let x_1, x_2 \in \mathbb{R} with x_1 < x_2. Then

    \begin{align*}  x_1 < x_2 && \implies && 2x_1 < 2x_2 \\  && \implies && 2x_1 + 5 < 2x_2 + 5 \\  && \implies && f(x_1) < f(x_2). \end{align*}

Hence, f is strictly increasing on \mathbb{R}.

Next,

    \begin{align*}  y = 2x + 5 && \implies && x &= \frac{y-5}{2} \\  && \implies && g(y) &= \frac{y-5}{2} \qquad \text{for all } y \in \mathbb{R}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):