Home » Blog » Prove some formulas for odd periodic functions

Prove some formulas for odd periodic functions

Let f be an odd, periodic, integrable everywhere function with period 2. Then, define

    \[ g(x) = \int_0^x f(t) \, dt. \]

  1. Prove that g(2n) = 0 for all n \in \mathbb{Z}.
  2. Prove that g is an even, periodic function with period 2.

  1. Proof. We can establish this by a direct computation.

        \begin{align*}  g(2n) &= \int_0^{2n} f(t) \, dt \\  &= \int_{-2n}^0 f(t+2n) \, dt & (\text{translation property, Thm 1.18})\\  &= \int_{-2n}^0 f(t) \, dt & (f \text{ periodic, period 2}) \\  &= - \int_0^{-2n} f(t) \, dt \\  &=  \int_0^{2n} f(-t) \, dt & (\text{Expansion/contraction property}) \\  &= - \int_0^{2n} f(t) \, dt & (f \text{ is odd so } f(-t) = -f(t)) \end{align*}

    But then we have

        \[ \int_0^{2n} f(t) \, dt = - \int_0^{2n} f(t) \, dt \quad \implies \quad \int_0^{2n} f(t) \, dt = 0 \]

    Since g(2n) = \int_0^{2n} f(t) \, dt we then have the requested result,

        \[ g(2n) = \int_0^{2n} f(t) \, dt = 0. \qquad blacksquare \]

  2. First, to show that g is even we need to show g(-x) = g(x) for all x. We compute, using the fact that f is odd and the expansion/contraction property of the integral (Theorem 1.19 in Apostol) with k=-1.

        \begin{align*}  g(-x) &= \int_0^{-x} f(t) \, dt \\  &= - \int_0^x f(-t) \, dt & (\text{Exp/Cont property}) \\  &= \int_0^x f(t) \, dt & (f \text{ is odd}) \\  &= g(x) & (\text{Def of } g). \end{align*}

    Next, to show that g is periodic with period 2 we must show g(x+2) = g(x) for all x.

        \begin{align*}  g(x+2) &= \int_0^{x+2} f(t) \, dt \\  &= \int_0^2 f(t) \, dt + \int_2^{x+2} f(t) \, dt \\  &= 0 + \int_0^x f(t+2) \, dt &(\text{part (a) and translation property}) \\  &= \int_0^x f(t) \, dt & (f \text{ is periodic, period 2}) \\  & = g(x). \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):