Home » Blog » Find all x such that the integral equation holds

Find all x such that the integral equation holds

Find all values of x \in \mathbb{R} so that

    \[ \int_0^x (t^3 - t) \, dt = \frac{1}{3} \int_{\sqrt{2}}^x (t - t^3) \, dt. \]


First, we evaluate the integral on the left,

    \[ \int_0^x (t^3 - t) \, dt &= \frac{x^4}{4} - \frac{x^2}{2}. \]

Then, we evaluate the integral on the right,

    \[ \frac{1}{3} \int_{\sqrt{2}}^x (t - t^3) \, dt = -\frac{1}{3} \left( \frac{x^4}{4} - \frac{x^2}{2} \right) \]

So, we then set these equal,

    \[  \int_0^x (t^3 - t) \, dt = \int_{\sqrt{2}}^x (t - t^3) \,dt \quad \implies \quad \frac{x^4}{4} - \frac{x^2}{2} &= -\frac{1}{3} \left( \frac{x^4}{4} - \frac{x^2}{2} \right)  \]

We can see by substituting that x = 0 is one solution. If x \neq 0 then we may divide by x^2 and obtain,

    \begin{align*}   \frac{x^2}{4} - \frac{1}{2} = -\frac{1}{3} \left( \frac{x^2}{4} - \frac{1}{2} \right) && \implies && \frac{x^2}{3} &= \frac{2}{3} \\ && \implies && x^2 &= 2 \\ && \implies && x = \pm \sqrt{2}. \end{align*}

Thus, all solutions are given by x = 0, \sqrt{2}, -\sqrt{2}.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):