Home » Blog » Compute average voltage and root-mean-square of voltage

Compute average voltage and root-mean-square of voltage

Denote the voltage in a circuit at time t by e(t). Let

    \[ e(t) = 3 \sin 2t. \]

Calculate the following:

  1. Average voltage over the interval 0 \leq t \leq \frac{\pi}{2}.
  2. The root-mean-square of the voltage

  1. Denote the average of e(t) by A(e) and compute,

        \begin{align*}   A(e) &= \frac{\int_0^{\frac{\pi}{2}} 3 \sin 2t \, dt}{\int_0^{\frac{\pi}{2}} dt} \\  &= \frac{6}{\pi} \int_0^{\frac{\pi}{2}} \sin 2t \, dt \\  &= \frac{3}{\pi} \int_0^{\pi} \sin t \, dt \\  &= \frac{3}{\pi}(1 - \cos \pi) \\  &= \frac{6}{\pi}. \end{align*}

  2. The root-mean-square is given by the square root of the function e^2 over the interval 0 \leq t \leq \frac{\pi}{2}. This gives us

        \begin{align*}  \text{root-mean-square } &= \left( \frac{2}{\pi} \int_0^{\frac{\pi}{2}} 9 \sin^2 2t \, dt \right)^{\frac{1}{2}} \\  &= \left( \frac{9}{\pi} \int_0^{\pi} \sin^2 t \, dt \right)^{\frac{1}{2}} \\  &= \sqrt{\frac{9}{2}} \\  &= \frac{3}{\sqrt{2}} = \frac{3 \sqrt{2}}{2}. \end{align*}

    Where we used the formula from the solution of Example 3, p. 101 of Apostol, to compute the integral \int_0^{\pi} sin^2 x \, dx = \frac{\pi}{2}.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):