Home » Blog » Prove some properties of averages of functions

Prove some properties of averages of functions

Prove that the average A(f) has the following properties:

  1. Additive property: A(f+g) = A(f) + A(g).
  2. Homogeneous property: A(cf) = c \cdot A(f) for a constant c \in \mathbb{R}.
  3. Monotone property: A(f) \leq A(g) if f \leq g for all x \in [a,b].

  1. Proof. We compute using the formula for the average of a function on an interval,

        \begin{align*}  A(f+g) &= \frac{1}{b-a} \int_a^b (f(x) + g(x)) \, dx \\  &= \frac{1}{b-a} \left( \int_a^b f(x) \, dx + \int_a^b g(x) \, dx & (\text{Additive prop of integrals})\\  &= \frac{1}{b-a} \int_a^b f(x) \, dx + \frac{1}{b-a} \int_a^b g(x) \, dx \\  &= A(f) + A(g). \qquad \blacksquare \end{align*}

  2. Proof. Again, we compute,

        \begin{align*}  A(cf) &= \frac{1}{b-a} \int_a^b c \cdot f(x) \, dx \\  &= \frac{c}{b-a} \int_a^bf(x) \, dx \\  &= c \left( \frac{1}{b-a} \int_a^b f(x) \, dx \right) \\  &= c \cdot A(f). \qquad \blacksquare \end{align*}

  3. Proof. Assume f(x) \leq g(x) for all x \in [a,b]. Then, by the monotone property of the integral we have,

        \begin{align*} \int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx && \implies && \frac{1}{b-a} \int_a^b f(x) \, dx &\leq \frac{1}{b-a} \int_a^b g(x) \, dx \\  && \implies && A(f) &\leq A(g). \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):