Home » Blog » Establish the prismoid formula

Establish the prismoid formula

Given a solid whose cross sections have area ax^2 + bx + c for x \in [0,h]. Compute the volume of this solid in terms of B_1, M, B_2, the cross sections corresponding to x= 0, \ x = \frac{h}{2}, \ x = h, respectively.


Since the area of the cross section at x is given by ax^2 + bx + c, we have

    \begin{align*}  B_1 &= c \\  M &= \frac{ah^2}{4} + \frac{bh}{2} + c \\  B_2 &= ah^2 + bh + c. \end{align*}

Then, we compute the volume,

    \begin{align*}  V &= \int_0^h (ax^2 + bx + c) \, dx \\    &= \frac{ah^3}{3} + \frac{bh^2}{2} + ch \\    &= \frac{h}{6} (2ah^2 + 3bh + 6c) \\    &= \frac{h}{6} (B_1 + 4M + B_2). \end{align*}

2 comments

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):