Home » Blog » Show an equivalence between given sets in Cartesian and polar coordinates

Show an equivalence between given sets in Cartesian and polar coordinates

Show that the sets of points satisfying

    \[ (x^2 + y^2)^2 = x^2-y^2, \quad y^2 \leq x^2; \qquad \qquad r = \sqrt{\cos (2\theta)}, \quad \cos (2 \theta) \geq 0. \]

are equal.


Letting x = r \cos \theta and y = r \sin \theta we plug in to the given Cartesian equation,

    \begin{align*}  (x^2+y^2)^2 = x^2 - y^2 && \implies && (r^2 \cos^2 \theta + r^2 \sin^2 \theta)^2 &= r^2 \cos^2 \theta - r^2 \sin^2 \theta \\  && \implies && r^4 &= r^2 \cos (2 \theta) \\  && \implies && r^2 &= \cos (2 \theta) \\   && \implies && r &= \sqrt{\cos (2 \theta)}.  \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):