Home » Blog » Show an equivalence between given sets in Cartesian and polar coordinates

Show an equivalence between given sets in Cartesian and polar coordinates

Show that the sets of points satisfying

    \[ x^2 + y^2 - x = \sqrt{x^2 + y^2}; \qquad r = 1 + \cos \theta. \]

are equal.


Letting x = r \cos \theta and y = r \sin \theta we plug in to the given Cartesian equation,

    \begin{align*}  x^2 + y^2 - x = \sqrt{x^2 + y^2} && \implies && r^2 \cos^2 \theta + r^2 \sin^2 \theta - r \cos \theta &= \sqrt{r^2 \cos^2 \theta + r^2 \sin^2 \theta} \\  && \implies && r^2 - r \cos \theta &= r \\  && \implies && 1 + \cos \theta &= r. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):