Home » Blog » Prove a formula for the sum from k=1 to n of sin kx

Prove a formula for the sum from k=1 to n of sin kx

Prove

    \[ \sum_{k=1}^n \sin kx = \frac{\sin \frac{nx}{2} \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2} } \]

for x \neq 2 m \pi, \ \ m \in \mathbb{Z}.


Proof. First, we recall from this exercise

    \begin{align*}  - 2 \sin \frac{x}{2} \sin (kx) &= \cos \left( \frac{x}{2} + kx \right) - \cos \left( \frac{x}{2} - kx \right) \\  &= \cos \left( (2k+1) \frac{x}{2} \right) - \cos \left( (1-2k) \frac{x}{2} \right) \\  &= \cos \left( (2k+1) \frac{x}{2} \right) - \cos \left( (2k-1) \frac{x}{2} \right). \end{align*}

Adding, with the right side telescoping, as in the previous exercise, we have

    \begin{align*}  \sum_{k=1}^n \sin kx &= \frac{ \cos \left(\left(n + \frac{1}{2}\right)x\right) - \cos \frac{x}{2}}{-2 \sin \frac{x}{2}} \\  &= \frac{ \cos (nx) \cos \frac{x}{2} - \sin (nx) \sin \frac{x}{2} - \cos \frac{x}{2}}{-2 \sin \frac{x}{2} } \\  &= \frac{ \cos \frac{x}{2} (\cos (nx) -1) - \sin (nx) \sin \frac{x}{2}}{-2 \sin \frac{x}{2} } \\  &= \frac{-2 \cos \frac{x}{2} \sin^2 \frac{nx}{2} - 2 \sin \frac{nx}{2} \cos \frac{nx}{2} \sin \frac{x}{2}}{-2 \sin \frac{x}{2}} \\  &= \frac{\sin \frac{nx}{2} \left( \cos \frac{x}{2} \sin \frac{nx}{2} + \cos \frac{nx}{2} \sin \frac{x}{2} \right)}{\sin \frac{x}{2} } \\  &= \frac{\sin \frac{nx}{2} \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):