Home » Blog » Calculate various definite integrals of sine

Calculate various definite integrals of sine

Compute the integral

    \[ \int_a^b \sin x \, dx \]

for the following values of a,b:

  1. a = 0, b = \frac{\pi}{6}.                  
  2. a = 0, b = \frac{\pi}{4}.
  3. a = 0, b = \frac{\pi}{3}.
  4. a = 0, b = \frac{\pi}{2}.
  1. a = 0, b = \pi.
  2. a = 0, b = 2 \pi.
  3. a = -1, b = 1.
  4. a = -\frac{\pi}{6}, b = \frac{\pi}{4}.

  1. \displaystyle{\int_0^{\frac{\pi}{6}} \sin x \, dx = 1 - \cos \frac{\pi}{6} = 1 - \frac{\sqrt{3}}{2}}.
  2. \displaystyle{\int_0^{\frac{\pi}{4}} \sin x \, dx = 1 - \cos \frac{\pi}{4} = 1 - \frac{\sqrt{2}}{2}}.
  3. \displaystyle{\int_0^{\frac{\pi}{3}} \sin x \, dx = 1 - \cos \frac{\pi}{3} = 1 - \frac{1}{2} = \frac{1}{2}}.
  4. \displaystyle{\int_0^{\frac{\pi}{2}} \sin x \, dx = 1 - \cos \frac{\pi}{2} = 1.
  5. \displaystyle{\int_0^{\pi} \sin x \, dx = 1 - \cos \pi = 2.
  6. \displaystyle{\int_0^{2\pi} \sin x \, dx = 1 - \cos 2 \pi = 0}.
  7. \displaystyle{\int_{-1}^1 \sin x \, dx = -\cos 1 - \cos(-1) = 0}.
  8. \displaystyle{\int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \sin x \, dx = \cos \left( -\frac{\pi}{6} \right) - \cos \frac{\pi}{4} = \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} = \frac{\sqrt{3} - \sqrt{2}}{2}}.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):