Home » Blog » Prove some identities of trig functions

Prove some identities of trig functions

Prove the following identities:

  1. 2 \cos x \cos y = \cos (x-y) + \cos (x+y).
  2. 2 \sin x \sin y = \cos (x-y) - \cos (x+y).
  3. 2 \sin x \cos y = \sin (x-y) + \sin (x+y).

  1. Proof. We use the formula for the cosine of a sum and of a difference in the following:

        \begin{align*}  2 \cos x \cos y &= \cos x \cos y + \cos x \cos y \\  &= \cos x \cos y + \sin x \sin y + \cos x \cos y - \sin x \sin y \\  &= \cos (x-y) + \cos (x+y). \qquad \blacksquare \end{align*}

  2. Proof. Again, we use the formula for the cosine of a sum and of a difference in the following:

        \begin{align*}  2 \sin x \sin y &= \sin x \sin y + \sin x \sin y \\  &= \cos x \cos y + \sin x \sin y - (\cos x \cos y - \sin x \sin y) \\  &= \cos (x-y) - \cos (x+y). \qquad \blacksquare \end{align*}

  3. Proof. Here we use the formula for the sine of a sum and difference:

        \begin{align*}  2 \sin x \cos y &= \sin x \cos y + \sin x \cos y \\  &= \sin x \cos y - \sin y \cos x + \sin x \cos y + \sin y \cos x \\  &= \sin (x-y) + \sin (x+y). \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):