Home » Blog » Prove difference quotient formulas for sine and cosine

Prove difference quotient formulas for sine and cosine

For h \neq 0 prove

    \begin{align*}  \frac{\sin (x+h) - \sin x}{h} &= \frac{\sin \left(\frac{h}{2}\right)}{h/2} \cos \left(x + \frac{h}{2} \right) \\  \phantom{=} \\  \frac{\cos (x+h) - \cos x}{h} &= - \frac{\sin \left( \frac{h}{2} \right)}{h/2} \sin \left(x + \frac{h}{2} \right). \end{align*}


Proof. We use the sine and cosine of sum and difference formulas in the following computations:

    \begin{align*}  \frac{\sin (x+h) - \sin x}{h} &= \frac{ \sin \left( x + \frac{h}{2} + \frac{h}{2} \right) - \sin \left( x + \frac{h}{2} - \frac{h}{2} \right)}{h} \\  &= \frac{\sin \left(x + \frac{h}{2} \right) \cos \left( \frac{h}{2} \right) + \sin \left( \frac{h}{2} \right) \cos \left( x + \frac{h}{2} \right) - \sin \left(x + \frac{h}{2} \right) \cos \left(\frac{h}{2} \right) + \sin \left( \frac{h}{2} \right) \cos \left( x + \frac{h}{2} \right)}{h} \\  &= \frac{2 \sin \frac{h}{2} }{h} \cos \left(x + \frac{h}{2} \right) \\  &= \frac{\sin \frac{h}{2}}{h/2} \cos \left(x + \frac{h}{2} \right). \end{align*}

And,

    \begin{align*}  \frac{ \cos (x+h) - \cos x}{h} &= \frac{ \cos \left( x + \frac{h}{2} + \frac{h}{2} \right) - \cos \left(x + \frac{h}{2} - \frac{h}{2} \right)}{h} \\  &= \frac{ \cos \left(x + \frac{h}{2} \right) \cos \frac{h}{2} - \sin \left( x + \frac{h}{2} \right) \sin \frac{h}{2} - \cos \left(x + \frac{h}{2} \right) \cos \frac{h}{2} - \sin \left(x + \frac{h}{2} \right) \sin \frac{h}{2}}{h}\\  &= - \frac{2 \sin \left( x + \frac{h}{2} \right) \sin \frac{h}{2}}{h} \\  &= - \frac{ \sin \frac{h}{2}}{h/2} \sin \left( x + \frac{h}{2} \right). \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):