Home » Blog » Prove any linear combination of sine and cosine can be expressed solely in terms of sine

Prove any linear combination of sine and cosine can be expressed solely in terms of sine

With reference to the previous exercise, prove that if A, B \in \mathbb{R} then there exist C, \alpha \in \mathbb{R} with C \geq 0 such that

    \[ A \sin x + B \cos x = C \sin (x + \alpha). \]


Proof. Let

    \[ C = \sqrt{A^2 + B^2} \]

Then, C \in \mathbb{R} and C \geq 0. Further, we have,

    \[ \left| \frac{A}{C} \right| \leq 1 \]

since

    \[ |A| \leq \left| \sqrt{A^2+B^2} \right| \qquad \text{since } B^2 \geq 0. \]

Hence, we know there exists \alpha \in \mathbb{R} such that

    \[ \cos \alpha = \frac{A}{C}. \]

But, if \cos \alpha = \frac{A}{C}, then

    \begin{align*}  \cos^2 \alpha = \frac{A^2}{C^2} && \implies && 1 - \sin^2 \alpha &= \frac{A^2}{A^2+B^2} \\  && \implies && \sin^2 \alpha &= 1 - \frac{A^2}{A^2+B^2} = \frac{B^2}{A^2+B^2} \\ && \implies && \sin \alpha &= \frac{B}{C}. \end{align*}

Thus,

    \begin{align*}    C \sin (x+\alpha) &= C \sin x \cos \alpha + C \sin \alpha \cos x \\  &= (A^2+B^2)^{1/2} \frac{A}{(A^2+B^2)^{1/2}} \sin x + (A^2+B^2)^{1/2} \frac{B}{(A^2+B^2)^{1/2}} \cos x \\  &= A \sin x + B \cos x. \qquad \blacksquare \end{align*}

5 comments

    • Anonymous says:

      True, but it’s not so hard to make a geometric argument like Apostol does in the text. (Proof using continuity will have to come later.) Since values of cosine and sine are coordinates of points on the units circle, just define alpha to be twice the area of the circular sector described by the points (1, 0) and (A/C, B/C). It’s clear that this area exists, hence we can choose an alpah such that cos alpha = A/C and sin alpha = B/C.

    • Awamoki says:

      The codomain of sin(x) is [-1,1] cause the Pythagorean identity sin^2(theta)+cos^2(theta)=1 and so his solution is legit.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):