Home » Blog » Prove the formula for the integral from a to b of x^(1/n)

Prove the formula for the integral from a to b of x^(1/n)

Let n \in \mathbb{Z}_{>0}, and let a,b \in \mathbb{R}_{>0}. Prove

    \[ \int_a^b x^{1/n} \, dx = \frac{b^{1 + \frac{1}{n}} - a^{1+\frac{1}{n}}}{1+\frac{1}{n}}. \]


Proof. First, we consider \int_0^a x^{1/n} \, dx. The rectangle of base a and height a^{1/n} consists of two components: the ordinate set of f(x) = x^{1/n} from 0 to a, and the ordinate set of g(y) = y^n from 0 to a^{1/n}. Thus,

    \begin{align*}  a(R) = a \cdot a^{1/n} = a^{1+\frac{1}{n}} &= \int_0^a x^{\frac{1}{n}} \, dx + \int_0^{a^{\frac{1}{n}}} y^n \, dy \\ \implies \int_0^a x^{\frac{1}{n}} \, dx &= a^{1+\frac{1}{n}} - \left. \frac{y^{n+1}}{n+1}\right|_0^{a^{\frac{1}{n}}} \\ &= a^{1+\frac{1}{n}} - \frac{a^{1+\frac{1}{n}}}{n+1} \\ &= a^{1+\frac{1}{n}} \cdot \left( \frac{1}{1+\frac{1}{n}} \right) \\ &= \frac{a^{1+\frac{1}{n}}}{1+\frac{1}{n}}.  \end{align*}

Then, for \int_a^b x^{\frac{1}{n}} \, dx we have

    \begin{align*}  \int_a^b x^{\frac{1}{n}} \, dx &= \int_0^b x^{\frac{1}{n}} \, dx - \int_0^a x^{\frac{1}{n}} \, dx \\  &= \frac{b^{1+\frac{1}{n}}}{1+\frac{1}{n}} - \frac{a^{1+\frac{1}{n}}}{1+\frac{1}{n}} \\  &= \frac{b^{1+\frac{1}{n}} - a^{1+\frac{1}{n}}}{1+\frac{1}{n}}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):