Home » Blog » Find a cubic polynomial to satisfy an integral equation

Find a cubic polynomial to satisfy an integral equation

Find a cubic polynomial P such that

    \[ P(0) = P(-2) = 0, \qquad P(1) = 15, \qquad 3 \int_{-2}^0 P(x) \, dx = 4. \]


Since P(x) is a cubic polynomial we write,

    \[ P(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3. \]

Then,

    \begin{align*}   P(0) &= 0 &\implies && c_0 &= 0 \\  P(-2) &= 0 &\implies && -c_1 + 2c_2 - 4c_3 &= 0 \\  P(1) &= 15 & \implies && c_1 + c_2 + c_3 &= 15 \end{align*}

Finally, from the integral equation we have,

    \begin{align*}  3 \int_{-2}^0 P(x) \, dx = 4 && \implies && \int_{-2}^0 (c_1 x + c_2 x^2 + c_3 x^3) \, dx &= \frac{4}{3} \\  && \implies && \left. \left( \frac{c_1}{2} x^2 + \frac{c_2}{3} x^3 + \frac{c_3}{4} x^4 \right) \right|_{-2}^0 &= \frac{4}{3} \\  && \implies && -2c_1 + \frac{8}{3} c_2 - 4c_3 &= \frac{4}{3} \\  && \implies && -6c_1 + 8c_2 - 12c_3 &= 4 \\  && \implies && -3c_1 + 4c_2 - 6c_3 &= 2. \end{align*}

Now, we have the following three equations in three unknowns,

    \begin{align*}  \phantom{3}-c_1 + 2c_2 - 4c_3 &= 0 \\  \phantom{-3}c_1 + \phantom{2}c_2 + \phantom{4}c_3 &= 15 \\  -3c_1 + 4c_2 - 6c_3 &= 2. \end{align*}

Since we don’t know any linear algebra, we’ll use elimination to solve for each variable. (If you know some linear algebra, you might know quicker ways to solve this system of equations.) First, adding the first and second equations we obtain

    \[ 3c_2 - 3c_3 = 15 \quad \implies \quad c_2 - c_3 = 5 \quad \implies \quad c_2 = 5+c_3. \]

Substituting this value of c_2 into the first equation we have

    \[ -c_1 + 2c_2 - 4c_3 = 0 \quad \implies \quad c_1 = 2c_2 - 4c_3 = 10 - 2c_3. \]

Finally, substituting our values of c_1 and c_2 into the last equation and solving for c_3 we get

    \[ -3(10-2c_3) + 4(5+c_3) -6c_3 = 2 \quad \implies \quad c_3 = 3. \]

And thus, using the equations we already have for c_1 and c_2, we get,

    \[ c_1 = 4, \qquad c_2 = 8. \]

Hence,

    \[ P(x) = 3x^3 + 8x^2 + 4x. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):