Home » Blog » Compute some integrals of step functions

Compute some integrals of step functions

  1. Let n \in \mathbb{Z}_{>0}, prove

        \[ \int_0^n [t] \, dt = \frac{n(n-1)}{2}. \]

  2. Let x \in \mathbb{R}_{>0}, and define

        \[ f(x) = \int_0^x [t] \, dt. \]

    Draw the graph of f for 0 \leq x \leq 4.


  1. Proof. Let P = \{ 0,1,2, \ldots, n \} be a partition of [0,n]. Then, by the definition of the greatest integer function, [t] is constant on the open subintervals of P, so

        \begin{align*}  \int_0^n [t] \, dt &= \sum_{k=1}^n (k-1)(k-(k-1)) & (s_k = k-1 \text{ since } [t]=k-1 \text{ if } k-1 < t < k)\\ &= \sum_{k=1}^n (k-1) \\ &= \sum_{k=0}^{n-1} k \\ &= \frac{n(n-1)}{2}. \end{align*}

    The final equality follows from here (I.4.7, #5). \qquad \blacksquare

  2. The graph is:

    Rendered by QuickLaTeX.com

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):