Home » Blog » Prove that the “number of elements” set-function satisfies Axioms 1-3 of area

Prove that the “number of elements” set-function satisfies Axioms 1-3 of area

Let

    \[ A = \{ 1,2,3,4,5 \}, \qquad \mathcal{M} = \mathcal{P}(A), \]

where \mathcal{P}(A) is power set of A (i.e., the class of all subsets of A). Next, define a function n by
n(S) equals the number of distinct elements in S for any S \in \mathcal{M}. Then, let

    \[ S = \{ 1,2,3,4 \}, \qquad T = \{ 3,4,5 \}. \]

Compute

    \[ n(S \cup T), \quad n(S \cap T), \quad n(S - T), \quad n(T-S). \]

Then, prove the function n satisfies Axioms 1-3 for area.


First, we compute

    \begin{alignat*}{2}  n(S \cup T) &= n( \{ 1,2,3,4,5 \}) &= 5 \\  n(S \cap T) &= n( \{ 3,4 \} ) &= 2 \\  n(S - T) &= n(\{1,2 \}) &= 2 \\  n(T - S) &= n(\{ 5 \}) &= 1 \end{alignat*}\end{align*}

Next, we prove this satisfies the first three area axioms.
Proof.
Axiom 1. (Non-negative property) This is satisfied for any set S since the number of distinct elements in a set is non-negative. So, n(S) \geq 0 for all S.
Axiom 2. (Additive property) First, if S,T \in \mathcal{M}, then S \subseteq A, \ T \subseteq A by definition of \mathcal{M}. So, for any x \in S we have x \in A and for any y \in T, we have y \in A.
Thus, if x \in S \cup T, then x \in A; hence, S \cup T \subseteq A, so S \cup T \in \mathcal{M}.
Then, S \cap T \subseteq S implies S \cap T \subseteq A (since S \subseteq A). Hence, S \cap T \in \mathcal{M}.
So, for any S,T \in \mathcal{M} we have S \cup T \in \mathcal{M}, \ S \cap T \in \mathcal{M}.
Next, we must show n(S \cup T) = n(S) + n(T) - n(S \cap T). For any x \in S \cup T we have x \in S, \ x \in T, or x \in S and T. So, this means x \in (S - T), or x \in (T - S) or x \in (S \cap T). Thus,

    \[ n(S \cup T) = n(S-T) + n(T-S) + n(S \cap T). \]

Similarly, we note,

    \begin{align*}    n(S) = n(S-T) + n(S \cap T) \quad &\implies \quad n(S-T) = n(S) - n(S \cap T) \\   n(T) = n(T-S) + n (T \cap S) \quad &\implies \quad n(T-S) = n(T) - n(S \cap T)  \end{align*}

So,

    \begin{align*}  n(S \cup T) &= n(S) - n(S \cap T) + n(T) - n(S \cap T) + n(S \cap T) \\ &= n(S) + n(T) - n(S \cap T). \end{align*}

Axiom 3. (Difference property) If S,T \in \mathcal{M} and S \subseteq T, then from above we have

    \[ n(T-S) = n(T) - n(T \cap S) \]

But, for S \subseteq T we know T \cap S = S, so,

    \[ n(T-S) = n(T) - n(S). \qquad \blacksquare \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):