Home » Blog » Find polynomials which satisfy given conditions

Find polynomials which satisfy given conditions

Let p be a polynomial of degree at most 2. Find all p that satisfying the given conditions.

  1. p(x) = p(1-x).
  2. p(x) = p(1+x).
  3. p(2x) = 2p(x).
  4. p(3x) = p(x+3).

Since p is a polynomial of degree at most 2 we may write,

    \[ p(x) = ax^2 + bx + c, \]

for a,b,c \in \mathbb{R} constants.

  1. We substitute,

        \begin{align*}    p(x) = p(1-x) &&\implies&& ax^2 +bx + c &= a(1-x)^2 + b(1-x) + c \\ && \implies && ax^2 + bx + c &= ax^2 + (-2a-b)x + (a+b+c). \end{align*}

    Equating like powers of x, we have,

        \[ a = a, \qquad b = -2a -b \ \implies \ a = -b, \qquad c = a + b + c \ \implies \ c \text{ is arbtirary}. \]

    Thus,

        \[ p(x) = -bx^2 + bx + c = bx(1-x) + c. \]

    Or, since these are arbitrary constants we can relabel them,

        \[ p(x) = ax(1-x) + b. \]

  2. Again, we substitute,

        \begin{align*}  p(x) = p(1+x) && \implies && ax^2 + bx + c &= a(1+x)^2 + b(1+x) + c \\ &&\implies && &= ax^2 + (2a+b)x + (a+b+c). \end{align*}

    Again, equating like powers of x,

        \[ a = a, \qquad b = 2a + b \ \implies \ a = 0, \qquad c = a+b+c \ \implies \ b = 0. \]

    Hence,

        \[ p(x) = c, \qquad c \text{ an arbitrary constant}. \]

  3. Substituting,

        \[ p(2x) = 2p(x) \qquad \implies \qquad  4ax^2 + 2bx + c = 2ax^2 + 2bx + 2c. \]

    Equating like powers of x,

        \[ 4a = 2a \ \implies \ a = 0, \qquad 2b = 2b \ \implies \ b \text{ arbitrary}, \qquad c = 2c \ \implies \ c = 0. \]

    Thus,

        \[ p(x) = bx, \qquad b \text{ arbitrary}. \]

  4. Substituting,

        \[ p(3x) = p(x+3) \qquad \implies \qquad 9ax^2 + 3bx + c = ax^2 + (6a+b)x + (9a+3b+c). \]

    Equating like powers of x,

        \[ 9a = a \ \implies \ a = 0, \qquad 3b = 6a +b \ \implies \ b = 0, \qquad c = 9a + 3b + c = c \ \implies \ c \text{ arbitrary}. \]

    Hence,

        \[ p(x)  = c \qquad \text{ for } c \text{ an arbitrary constant}. \]

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):