Home » Blog » Application of the arithmetic mean – geometric mean inequality

Application of the arithmetic mean – geometric mean inequality

Use the Arithmetic mean – Geometric Mean inequality to prove that for a,b,c \in \mathbb{R}_{>0}, with abc =8, then

    \[ a+b+c \geq 6 \qquad \text{and} \qquad ab + ac + bc \geq 12. \]


Proof. Since a,b,c are positive real numbers from the AM-GM inequality we know,

    \begin{align*}    &&G(a,b,c) &\leq M_1 (a,b,c) \\ \implies && (abc)^{1/3} &\leq \left( \frac{a+b+c}{3} \right) \\ \implies && 8 &\leq \frac{(a+b+c)^3}{27} \\ \implies && 27\cdot 8 &\leq (a+b+c)^3 \\ \implies && a+b+c &\geq 6. \end{align*}

Then, for the second inequality we consider M_{-1} and use the inequality from part (b) of the AM-GM exercise,

    \begin{align*}  && M_{-1} (a,b,c) &\leq G(a,b,c) \\ \implies && \left( \frac{a^{-1} + b^{-1} + c^{-1}}{3} \right)^{-1} &\leq (abc)^{1/3} \\ \implies && \left( \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) &\leq 8^{1/3} \\ \implies && \frac{27}{\left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)^3} &\leq 8 \\ \implies && \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^3 &\geq \frac{27}{8} \\ \implies && \frac{1}{a} + \frac{1}{b} + \frac{1}{c} &\geq \frac{3}{2} \\ \implies && \frac{bc + ac + ab}{abc} &\geq \frac{3}{2} \\ \implies && ab + ac + bc &\geq \frac{3}{2} \cdot 8 = 12. \qquad \blacksquare \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):