Home » Blog » Prove some properties of the improper integrals ∫ (sin x) / x and ∫ (cos t) / t2

Prove some properties of the improper integrals ∫ (sin x) / x and ∫ (cos t) / t2

  1. Prove that the following improper integral converges:

        \[ \int_{0^+}^1 \frac{\sin x}{x} \, dx. \]

  2. Prove that

        \[ \lim_{x \to 0^+} x \int_x^1 \frac{\cos t}{t^2} \, dt = 1. \]

  3. Determine the convergence or divergence of the improper integral

        \[ \int_{0^+}^1 \frac{\cos t}{t^2} \, dt. \]


Incomplete.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):