Home » Blog » Find a value of C so that the given improper integral converges

Find a value of C so that the given improper integral converges

Find a value for the constant C \in \mathbb{R} so that the improper integral

    \[ \int_0^{\infty} \left( \frac{1}{\sqrt{1+x^2}} - \frac{C}{x+1} \right) \, dx \]

converges and find the value of the integral in this case.


First, we have

    \begin{align*}  \int_0^{\infty} \left( \frac{1}{\sqrt{1+2x^2}} - \frac{C}{x+1} \right) \, dx &= \int_0^{\infty} \frac{x+1-C\sqrt{1+2x^2}}{(x+1)\sqrt{1+2x^2}} \, dx \\[9pt]  &= \int_0^{\infty} \frac{x+1-xC\sqrt{2 + \frac{1}{x^2}}}{(x^2+x)\sqrt{2 + \frac{1}{x^2}}} \, dx \\[9pt]  &= \int_0^{\infty} \frac{x \left(1 - C \sqrt{2 + \frac{1}{x^2}} \right) + 1}{x^2 \sqrt{2 + \frac{1}{x^2}} + x \sqrt{2 + \frac{1}{x^2}}} \, dx. \end{align*}

For this to converge we must have the coefficient of the x in the numerator going to 0 as x \to \infty (otherwise the integral will converge by limit comparison with \int \frac{1}{x}). Hence,

    \[ \lim_{x \to \infty} \left(1 - C \sqrt{2 + \frac{1}{x^2}} \right) = 1 - \sqrt{2} C \quad \implies \quad C = \frac{\sqrt{2}}{2}. \]

Now, we need to evaluate the integral. Incomplete.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):