Home » Blog » Conclude if the given series converges or diverges and justify your conclusion

Conclude if the given series converges or diverges and justify your conclusion

Test the following series for convergence or divergence. Justify the decision.

    \[ \sum_{n=3}^{\infty} \frac{1}{ \log n \cdot (\log (\log n))^s}. \]


We look to apply the integral test. To that end let

    \[ f(x) = \frac{1}{x \log x (\log (\log x))^s}. \]

Then,

    \begin{align*}   t_n &= \int_3^n \frac{1}{x \log x(\log(\log x))^s} \, dx \\ &= \begin{dcases}  \frac{(\log(\log n))^{-s} (-1+ s + \log(\log n))}{-1+s} - \frac{(\log(\log 3))^{-s} (-1+s+\log(\log 3))}{-1+s} & \text{if } s \neq 1. \\  \log(\log(\log n)) - \log(\log(\log 3)) & \text{if } s = 1. \end{dcases} \end{align*}

Therefore, \{ t_n \} converges if s > 1 and diverges if s \leq 1. Hence,

    \[ \sum_{n=3}^{\infty} \frac{1}{n \log n (\log (\log n))^s} \]

converges if s > 1 and diverges if s \leq 1.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):