Home » Blog » Conclude if the given series converges or diverges and justify the conclusion

Conclude if the given series converges or diverges and justify the conclusion

Test the following series for convergence or divergence. Justify the decision.

    \[ \sum_{n=1}^{\infty} \frac{\sqrt{2n-1} \log(4n+1)}{n(n+1)}. \]


Let

    \[ a_n = \frac{\sqrt{2n-1} \log (4n+1)}{n(n+1)}, \qquad b_n = \frac{n^{\varepsilon}}{n^{\frac{3}{2}}} \quad 0 < \varepsilon < \frac{1}{2}. \]

Then, the series \sum b_n converges by Example #1 on page 398 of Apostol,

    \[ b_n = \frac{1}{n^{\frac{3}{2} - \varepsilon}} \quad \implies \quad b_n = \frac{1}{n^s} \]

where s > 1 (since \varepsilon < \frac{1}{2}). Then consider the limit,

    \begin{align*}  \lim_{n \to \infty} \frac{a_n}{b_n} &= \lim_{n \to \infty} \frac{\frac{\sqrt{2n-1} \log(4n+1)}{n(n+1)}}{\frac{n^{\varepsilon}}{n^{\frac{3}{2}}}} \\[9pt]  &= \lim_{n \to \infty} \frac{n^{\frac{3}{2}} \sqrt{2n-1} \log (4n+1)}{n^{\varepsilon+1} (n+1)} \\[9pt]  &= \lim_{n \to \infty} \left( \frac{\sqrt{n} \sqrt{2n-1}}{n+1} \cdot \frac{\log(4n+1)}{n^{\varepsilon}} \right). \end{align*}

The limits of each of the terms in the product exist (as we show below) so the limit of the product is the product of the limits,

    \begin{align*}  &= \left( \lim_{n \to \infty} \frac{\sqrt{n}\sqrt{2n-1}}{n+1} \right) \left( \lim_{n \to \infty} \frac{\log(4n+1)}{n^{\varepsilon}} \right) \\[9pt]  &= \left( \lim_{n \to \infty} \frac{\sqrt{2n^2 - n}}{n+1} \right) \left( \lim_{n \to \infty} \frac{\log(4n+1)}{n^{\varepsilon}} \right) \\[9pt]  &= \left( \lim_{n \to \infty} \frac{\sqrt{2 - \frac{1}{n}}}{1 + \frac{1}{n}} \right) \left( \lim_{n \to \infty} \frac{\log(4n+1)}{n^{\varepsilon}} \\[9pt]  &= \sqrt{2} \cdot 0 \\[9pt]  &= 0. \end{align*}

The limit \lim_{n \to \infty} \frac{\log (4n+1)}{n^{\varepsilon}} = 0 since we know

    \[ \lim_{n \to \infty} \frac{(\log n)^a}{n^b} = 0 \]

for all a>0, b>0. Therefore, we have

    \[ \lim_{n \to \infty} \frac{a_n}{b_n} = 0. \]

By Theorem 10.9 (see the note after the proof of the theorem on page 396 of Apostol), we then have the convergence of \sum b_n implies the convergence of \sum a_n. Hence,

    \[ \sum_{n=0}^{\infty} \frac{\sqrt{2n-1} \log(4n+1)}{n(n+1)} \]

converges.

One comment

  1. Artem says:

    This can be done also simpler (from my point of view): notice that the logarithm term is less than n^{1/8} for all n > some N. Then, sqrt{2n – 1} < sqrt{2n}. From this, we find the identity a_n < \sqrt{2}b_n, which leads to Riemann zeta with power 11/8. Thus, by comparison test the series is convergent.

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):