Home » Blog » Calculate sinh x and cosh x given tanh x = 5/13

Calculate sinh x and cosh x given tanh x = 5/13

Find the values of \sinh x and \cosh x given that \tanh x = \frac{5}{13}.


Since \tanh^2 + \sech^2 = 1 (see here, Section 6.19 Exercise #14) we have

    \begin{align*}  \tanh^2 x + \operatorname{sech}^2 x = 1 && \implies && \operatorname{sech}^2 x = \frac{144}{169} \\  && \implies && \operatorname{sech} x = \frac{12}{13} \\  && \implies && \cosh x = \frac{13}{12}. \end{align*}

Then, to compute \sinh x we have,

    \begin{align*}  \tanh x = \frac{\sinh x}{\cosh x} && \implies && \frac{5}{13} &= \frac{12}{13} \sinh x \\  && \implies && \sinh x &= \frac{5}{12}. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):