Home » Blog » Compute the integral from 0 to (1/2)π^2 of (x^2+ cos x)

Compute the integral from 0 to (1/2)π^2 of (x^2+ cos x)

Compute the following integral:

    \[ \int_0^{\frac{\pi}{2}} (x^2 + \cos x) \, dx. \]


We compute as follows:

    \begin{align*}  \int_0^{\frac{\pi}{2}} (x^2 + \cos x) \, dx &= \int_0^{\frac{pi}{2}} x^2 \, dx + \int_0^{\frac{\pi}{2}} \cos x \, dx \\  &= \left. \frac{x^3}{3} \right|_0^{\frac{\pi}{2}} + \sin x \biggr \rvert_0^{\frac{\pi}{2}} \\  &= \frac{\pi^3}{24} + \sin \frac{\pi}{2} \\  &= \frac{\pi^3}{24} + 1. \end{align*}

Point out an error, ask a question, offer an alternative solution (to use Latex type [latexpage] at the top of your comment):